
2 BSD 2/2008

get started You've installed it. Now what? Packages!

3www.bsdmag.org

You've installed it. Now
what? Packages!

A freshly installed machine nice, but it’s when you start using the package tools that the real visitas open.
Read on for a kickstart on packages.

Peter N. M. Hansteen

I nstalling OpenBSD is easy, and takes you maybe 20 min-
utes. Most articles and guides you find out there will urge
you to take a look at the files in /etc/ and explore the man
pages to make the system do what you want. With a mod-

ern BSD, the base system is full featured enough that you can
in fact get a lot done right away just by editing the relevant files
and perhaps starting or restarting one or more services. If all you
want to do is set up something like a gateway for your network
with basic-to-advanced packet filtering, everything you need is
already there in the basic install.

Then again, all the world is not a firewall, and it is likely
you will want to use, for example, a web browser other than
the venerable lynx or editing tools that are not vi or mg. That's
where packages and package systems come in. I will skip a
little ahead of myself and make a confession: The machine I
am writing this piece on reports that it has some 260 packages
installed.

Before we move on to the guts of this article, some ceremonial
words of advice: If you are new to OpenBSD or it is your first time in
a while on a freshly installed system, you could do a lot worse than
spending a few minutes reading man afterboot. That man page
serves as a handy checklist of things you should at least take a
peek at to ensure that your system is in good working order.

Some packages will write important information, such as
strings or stanzas to put in your rc.conf.local, rc.local or
sysctl.conf files, to your terminal. If you are not totally confi-
dent what to do after the package install finishes, it may be a
good idea to run your ports and packages installs in a script
session. See man script for details.

When dinosaurs roamed the Earth...
The story of the ports and packages goes back to the early days
of free software when we finally found ourselves with complete
operating systems that were free and hackers^H^H^H^H^H^H

system administrators found that even with full featured operating
systems such as the BSDs, there were sometimes things you
would want to do that was not already in there. The way to get
that something else was usually to fetch the source code, see if
it would compile, make some changes (or a lot) to make it com-
pile, possibly introduce the odd #ifdef block and keep at it until
the software would compile, install and run. In the process you
most likely found out what, if any, other software (tools or libraries)
needed to be installed to complete the process. At that point, you
could claim to have /ported/ the software to your platform. If you
had been careful and saved a copy of the original source files
somewhere, you could use the diff utility to create a patch you
could then send to the program maintainer and hope that he or
she would then incorporate your changes in the next release.

But then, why wait for the next release? Why not share those
diffs with others? How about putting it into a CVS repository that
would be available to everyone? That idea was tossed around
on relevant mailing lists for a while, and the first version of the
/ports system/ appeared in FreeBSD 1.0 in December 1993.

The other BSD systems adopted the basic idea and frame-
work soon after, with small variations. On NetBSD, the term
'port' was already in use for ports of the operating system it-
self to specific hardware platforms, so on that operating system,
the ports tree is referred to as 'package source', or /pkgsrc/ for
short. The ports and packages tools are still actively maintained
and developed on all BSDs, and most notably Marc Espie re-
wrote the pkg_* tools for OpenBSD's 3.5 release.

Parallel development has lead to some differences in the
package handling on the various BSDs, and some of the opera-
tions I describe here from an OpenBSD perspective may not be
identical on other operating systems. Around the same time the
BSDs started including a ports tree and packages, people on
the Linux side of the fence started developing package systems
too. With distributed development taken to the point where the

2 BSD 2/2008

get started You've installed it. Now what? Packages!

3www.bsdmag.org

kernel, basic system tools and libraries
are maintained separately, perhaps the
need there was even greater than on
the BSDs. In fact, some Linux distribu-
tions such as the Debian based ones
have taken the package management to
the point where everything is a package
- every component on a running system
is a package that is maintained via the
package system, including basic system
tools, libraries and the operating system
kernel. In contrast, the BSDs tend to treat
the base system as a whole, with the
package management tools intended
solely for managing software that does
not come as a part of the default install.

The anatomy
of ports and packages
The ports system consists of a set of 'reci-
pes' to build third party software to run on
your system. Each port supplies its own
Makefile, whatever patches are needed
in order to make the software build and
optionally package message files with
information that will be displayed when
the software has been installed.

So to build and install a piece of
software using the ports system, you fol-
low a slightly different procedure than the
classical fetch - patch - compile cycle. You
will need to install the ports tree, either by
unpacking ports.tar.gz from your CD set or
by checking out an updated version via
cvs, or for that matter cvsup or the rewrit-
ten version called csup. With a populated
ports tree in hand, you can go to the port's
directory, say

$ cd /usr/ports/print/lyx

to see about installing lyx, the popular
latex front end. On a typical OpenBSD
system, that directory contains the follow-
ing files:

$ ls -l

total 8

-rw-rw-r-- 1 root wheel 1825 May

18 21:57 Makefile

-rw-rw-r-- 1 root wheel 274 Apr

5 2007 distinfo

drwxrwxr-x 2 root wheel 512 Nov

1 2007 patches

drwxrwxr-x 2 root wheel 512 Nov

1 2007 pkg

here, the Makefile is the main player. If
you open it now in a text editor or viewer

such as less, you will see that the syntax
is quite straightforward. What it does is
mainly to define a number of variables
such as the package name, where to
fetch the necessary source files, which
programs are required for the compile
to succeed and which libraries the re-
sulting program will need to have pres-
ent in order to run correctly.

The file defines a few other variables
too, and you can look up the exact mean-
ing of each in the man pages, starting with
man ports and man bsd.port.mk. With all
relevant variables set, at the very end the
file uses the line:

.include <bsd.port.mk>

to pull in the common infrastructure it
shares with all other ports.

This is what makes the common tar-
gets work, so for example, typing:

$ make install SUDO=sudo

(probably the most common port-related
make command for end users and admin-
istrators) in the port directory will start the
process to install the software. But before
you type that command and press Enter,
you may want to consider this: This com-
mand will generate a lot of output, most
likely more than will fit in the terminal’s
buffer. If the build fails, it is likely that the
message about the first thing that went
wrong will have scrolled off the top of your
screen and out of the terminal buffer. For
that reason, it is good sysadmin practice to
create a record of lengthy operations such
as building a port by using the script com-
mand. Typing script in a shell will give you
a subshell where everything displayed on
the screen will be saved in a file. Escape
sequences, asterisk-style progress bars
and twirling batons will end up a bit gar-
bled, but that essential message you are
looking for will be there too. man script will
give you the details, and unless you are an
incurable packrat, do remember to delete
the typescript file afterwards. That process
will start with checking dependencies, go
on with downloading the source archive
and checking that the fetched file matches
the cryptographic signatures stored in the
distinfo file. If the signatures match, the
source code is extracted to a working
directory, the patches from the patches/
directory are applied, and the compilation
starts. If the dependency check finds that

one or more pieces are missing, you will
see that the process fetches, configures
and installs the required package before
continuing with the build process for the
original package.

After a while, the package build
most likely succeeds and the install
completes. At this point you will have a
new piece of software installed on your
system. You should be able to run the
program, and the installed package will
turn up in the package listings output by
pkg_info, such as:

$ pkg_info | grep lyx

lyx-1.4.3p2-qt graphical frontend

for LaTeX (nearly WYSIWYG)

This information is taken from the pack-
age's subdirectory in /var/db/pkg, where
the information about currently installed
packages is stored.

If you paid close attention during the
make install process, you may have no-
ticed that the install step was performed
from a binary package. This is one of
the distinctive features of the OpenBSD
version of the package system. The pack-
age build always generates an installable
package based on a 'fake' install to a
private directory, and software is always
installed on the target system from a
package.

But you do not need to do that!
This means several things. If you have
built and installed a package by typing
'make install' in the relevant ports direc-
tory and later run the 'make deinstall'
or pkg_delete to remove the software, any
subsequent install of the software will take
place from the package file stored in a
subdirectory of /usr/ports/packages. But
more importantly, in most cases you can
keep your system's packages up to date
without a ports tree on the machine. (See
Note [1]) For each release, a full set of
packages is built and made available on
the OpenBSD mirrors, and by the time
you read this, there is reason to hope that
running updates to -stable packages will
be available for supported releases too.

The way to make good use of this is
to set the PKG_PATH variable to include the
packages directory for your release on
one or more mirrors close to you and/or a
local directory, and then run pkg_add with
the -u flag. (See Note [2])

4 BSD 2/2008

get started
My laptop runs -current and I'm in Eu-

rope, so the PKG_PATH is set to

PKG_PATH=ftp://ftp.eu.openbsd.org/pub/

OpenBSD/snapshots/packages/`machine

-a`/

On a more conservatively run system, you
may want to set it to something like

PKG_PATH=ftp://ftp.eu.openbsd.org/pub/

OpenBSD/4.3/packages/`machine -a`/

Once your PKG_PATH is set to something
sensible, you can use pkg_add and the
package base name to install packages,
so a simple

$ sudo pkg_add lyx

would achieve the same thing as the
'make install' command earlier, and
most likely a lot faster too. Once you have
a set of packages installed, and keeping
in mind that you need a meaningful PKG_
PATH, you can keep them up to date using
pkg_add -u. If you want more detailed
information about the package update
process and want pkg_add to switch to in-
teractive mode when necessary, you can
use something like this command:

$ sudo pkg_add -vui

I have at times tended to run my pkg_add
-u with some of the -F flags in order to
force resolution of certain types of conflict,
but given the quality of the work that goes
into the packages, most of the -F options
are rarely needed.

pkg_add and its siblings in the pkg_*
tools collection has a number of options
we have not covered here, all intended
to make your package management on

OpenBSD as comfortable and flexible as
possible. The tools come with readable
man pages, and may very well be the
topic of future BSD Magazine articles.

 More information on the net
The main source of information about the
OpenBSD ports and packages system is
to be found on the OpenBSD project’s
web site. The FAQ’s ports and packages
section at http://www.openbsd.org/faq/
faq15.html has more information about
all the issues covered in this article, and
goes into somewhat more detail than
space allows here. If you encounter
problems while installing or managing
your packages, it is more than likely that
you will find a solution or a good expla-
nation there. And of course, if nothing
else works or you can’t figure it out,
there is always the option of asking the
good people at misc@openbsd.org or
ports@openbsd.org or search the cor-
responding mailing list archives.

How do I make a package then?
That is a large question, and the first
question you should ask if you think you
want to port a particular piece of soft-
ware is, Has this already been ported?.
There are several ways to check. If you
are thinking of creating a port, you most
likely already have the ports tree in-
stalled, so using the ports infrastructure’s
search infrastructure is the obvious first
step. Simply go to the /usr/ports direc-
tory and run the command:

$ make search key=mykeyword

Where mykeyword is a program name or
keyword related to the software you are
looking for. One other option with even
more flexible search possibilities is to in-

stall databases/sqlports. And of course,
searching the ports mailing list archives
(http://marc.info/?l=openbsd-ports) or ask-
ing the mailing list works too.

When you have determined that the
software you want to port is not already
available as a package, you can go on to
prepare for the porting effort. Porting and
package making is the subject of much
usenet folklore and rumor, but in addition
you have several man pages with specific
information on how to proceed. These are,
ports, package, packages, packages-
specs, library-specs and bsd.port.mk.

Read those and use your familiar-
ity with the code you are about to port to
find your way. The OpenBSD web offers
a quite a bit of information too. You could
start with re-reading the main ports and
packages page at http://www.openbsd.org/
faq/faq15.html, and follow up with the
pages about the porting process at http:
//www.openbsd.org/porting.html, testing the
port at http://www.openbsd.org/porttest.html
and finally the checklist for a sound port at
http://www.openbsd.org/checklist.html.

All the while, try first to figure out the
solution to any problems that pop up,
read the supplied documentation, and
only then ask port maintainers via the
ports mailing list for help. Port maintain-
ers are generally quite busy, but if you
show signs of having done your home-
work first, there is no better resource
available for helping you succeed in your
porting or port maintenance efforts.

One fine resource for the aspiring
porter is Bernd Ahlers’ ports tutorial from
OpenCon 2007, you can look up Bernd’s
slides at http://www.openbsd.org/papers/
opencon07-portstutorial/index.html, and it
is possible he can be persuaded to repeat
the tutorial at a conference near you.

Peter N. M. Hansteen is the author of
The Book of PF (No Starch Press, Decem-
ber 2007). Peter has been tinkering with
computers and networks since the mid-
1980s, found the Freenixes in the early
1990s and is a frequent lecturer on PF and
other OpenBSD and FreeBSD topics. He
is a consultant, sysadmin and writer based
in Bergen, Norway who occasionally blogs
at http://bsdly.blogspot.com/ and welcomes
your comments to peter@bsdly.net.

About the Author

[1] The main exceptions to the rule that precompiled packages are available from the
mirrors are software with licenses that do not allow redistribution or require the end
user to do specific things such as go to a web site and click a specific button to for-
mally accept a set of conditions. In those cases it cant' be helped, and you will need
to go via the ports system to create a package locally and install that.
[2] If you want to find out what packages are available at your favorite mirror, you can get
a listing of package names by fetching the file $PKG_PATH/index.txt. The OpenBSD web
site offers a listing of available packages with short descriptions, too. For OpenBSD 4.3, the
listing is available from http://www.openbsd.org/4.3_packages/, from there you click on the
link for your platform

Notes

